Требования по установке пусковых устройств с МКА формата «CubeSat»

353П14С46-48175-1151

Содержание

Вве	едение	5
1	Общие сведения	6
2	Условия эксплуатации	7
3	Механический интерфейс	14
4	Электрические интерфейсы	19
5	Требования к электромагнитной совместимости	21
6	Требования к надежности	23
7	Требования к безопасности	24
8	Наземная подготовка пускового устройства и МКА в составе КГЧ	26
9	Предоставляемые материалы	27

Введение

Настоящий документ содержит основные требования по установке пусковых устройств с МКА формата «CubeSat» в качестве попутного груза на адаптерах разработки АО «РКЦ «Прогресс», используемых при выведении ПГ в составе ГБ с БВ «Волга».

Настоящий документ разработан согласно распоряжению №536 по АО «РКЦ «Прогресс» от 01.04.2015г.

В данном документе рассмотрено 2 варианта установки МКА формата «CubeSat»:

<u>Вариант 1</u> - использование для размещения МКА пускового устройства ТПК разработки АО «РКЦ «Прогресс» (изделие 235КС).

<u>Вариант 2</u> - использование для размещения МКА пусковых устройств зарубежного производства.

Заявка на рассмотрение возможности оказания услуг по установке и запуску МКА формата «CubeSat» рассматривается только после определения целевого полезного груза.

Окончательные ИД на МКА и пусковые устройства выдаются в АО «РКЦ «Прогресс» не менее чем за 13 месяцев до пуска РКН.

1 Общие сведения

- 1.1 БВ «Волга» разработан для использования совместно с РН «Союз-2» этапов 1а, 1б и 1в и обеспечивает выведение полезной нагрузки на низкие круговые орбиты высотой до 1500 км, а также на солнечно-синхронные с высотой до 850 км.
 - 1.2 БВ «Волга» обеспечивает решение следующих задач:
 - перевод ГБ с опорной на целевую орбиту;
- стабилизацию и заданную ориентацию ГБ на пассивных и активных участках полета, а также, в случае необходимости, обеспечение закрутки головного блока;
 - контроль состояния БВ в процессе выведения;
 - затопление (или увод) блока выведения с адаптером с целевой орбиты.
- 1.3 Для обеспечения жесткой связи БВ «Волга» с КА используются адаптеры со средствами отделения КА.
- 1.4 При использовании адаптера, разработки АО «РКЦ» Прогресс», имеется принципиальная возможность установки пускового устройства с МКА формата «CubeSat» для выведения МКА в качестве попутного груза, при этом МКА будет отделяться на той же орбите, что и основной КА.
- 1.5 Выдача сигнала для активации механизма отделения пускового устройства определяется из условия обеспечения несоударения.
- 1.6 Сигнал подтверждения отделения МКА может быть получен в текущем или последующем после выдачи сигнала на отделение сеансе связи.
- 1.7 МКА может быть закреплен на адаптере с использованием пускового устройства ТПК разработки АО «РКЦ» Прогресс» (изделие 235КС) или пускового устройства зарубежного производства.

2 Условия эксплуатации

Условия эксплуатации МКА формата «CubeSat» с момента монтажа его на адаптере соответствуют требованиям предъявляемым основным КА и БВ «Волга».

- 2.1 Монтаж (демонтаж) пускового устройства с МКА производится на УТК (ТК) КГЧ в следующих условиях:
- температура воздуха от 10 до 35 °C (суточные колебания температуры не более 10 °C);
 - давление воздуха (100±6,7) кПа ((750±50) мм рт. ст.);
 - относительная влажность воздуха не более 80 %.
- 2.2 Условия при транспортировании МКА с пусковым устройством в составе КГЧ на ТК РКН и в составе РКН на стартовый комплекс и обратно в случае несостоявшегося запуска:
 - температура воздуха от 10 до 30 °C;
 - давление воздуха (100±6,7) кПа ((750±50) мм рт. ст.);
 - относительная влажность воздуха не более 80 %;
- класс чистоты термостатируемого воздуха по ГОСТ ИСО 14644-1-2002 не хуже 8 ИСО.
- 2.3 Максимальная скорость транспортировки в составе КГЧ -10 км/ч, максимальная скорость транспортировки в составе РКН -5км/ч. Максимальное расстояние однократной транспортировки в составе КГЧ -60 км, максимальное расстояние однократной транспортировки в составе РКН -10 км.

Примечание – допускается трехкратная транспортировка в случае несостоявшегося пуска.

2.4 Условия при установке РКН в СС:

Установка РКН в стартовую систему производится в полевых условиях при температуре воздуха от минус 40 до плюс 45 °C при относительной влажности до 100%.

Примечание: на космодроме «Восточный» возможно кратковременное понижение температуры воздуха до минус 49,9 °C до 2,5 дней в году.

- 2.5 Условия внутри СЗБ при нахождении в составе РКН на СК:
- температура воздуха от 10 до 30 °C, допускается изменение температуры от минус 20 до плюс 30 °C на время не более 3 часов;
 - давление воздуха (100±6,7) кПа ((750±50) мм рт. ст.);
 - относительная влажность воздуха не более 80 %.
- 2.6 На участке полета РН скорость изменения давления не более 2 кПа/с (15 мм рт. ст./с), при этом в течение 3 с скорость изменения давления может достигать 4,7 кПа/с (35 мм рт. ст./с).

Скоростной напор на момент отделения створок головного обтекателя сборочно-защитного блока $19,6\pm19,6$ Па (2 ± 2 кгс/м²).

Уровень плотности теплового потока, воздействующего на пусковое устройство, определяется расчетным путем в ходе анализа конкретной миссии запуска.

- 2.7 Пусковое устройство с МКА на участке орбитального полета находятся в условиях воздействия:
 - невесомости;
- давления окружающей атмосферы не менее $0,13\cdot10^{-9}$ кПа $(1,0\cdot10^{-9}$ мм рт. ст.);
 - температуры от минус 150 до плюс 125°;
 - ионизирующих излучений космического пространства.
- 2.8 Требования по режимам механических воздействий для МКА формата «Cubesat» при совместной эксплуатации с универсальным ТПК на изделиях разработки АО «РКЦ «Прогресс» приведены в таблицах 1-8. Материалы по режимам механических воздействий являются предварительными и могут быть уточнены под конкретный пуск с учетом фактического места установки ТПК и условий функционирования.

Режимы механических воздействий заданы в местах крепления МКА формата «Cubesat» к универсальному ТПК и относятся к каждой из трех взаимно-перпендикулярных осей.

МКА формата «CubeSat» и его конструктивные элементы не должны иметь резонансов в диапазоне частот до 25 Гц.

- 2.8.1 Режимы механических воздействий на участке выведения МКА формата «CubeSat» с использованием универсального ТПК 235КС в случае установки ТПК на ПхО СЗБ разработки АО «РКЦ «Прогресс» приведены:
 - в таблицах 1, 2 по вибрации;
 - в таблице 3 по линейному ускорению;
 - в таблице 4 по ударным воздействиям.

На участке выведения на МКА формата «CubeSat» действует акустическое давление с суммарным среднеквадратическим уровнем 144,1 дБ в течение 60 с (отсчет значений уровней акустического давления от $P=2\cdot10^{-5}$ Па).

Таблица 1 — Эксплуатационные режимы широкополосной случайной вибрации

		Частота, Гц						Продолжи
Номер	20	50	100	200	500	1000	2000	1
режима	Спе	ц ктральна	ц Потне	ıость виб	ı роускореі	⊔ ния, м ² ·с ⁻⁴	 ·Гц ⁻¹	тельность
		Спектральная плотность виброускорения, м $^2 \cdot c^{-4} \cdot \Gamma \mu^{-1}$ ($g^2/\Gamma \mu$)						действия, с
					57,72-	110,63-		
1	2,89	3,85	5,77	11,54	110,63	28,86	28,86	120
1	(0,03)	(0,04)	(0,06)	(0,12)	(0,6-	(1,15-	(0,3)	120
					1,15)	0,3)		
2	1,92	1,92	3,85	5,77	9,62	9,62	4,81	480
2	(0,02)	(0,02)	(0,04)	(0,06)	(0,1)	(0,1)	(0,05)	400

Примечание - Изменение спектральной плотности виброускорения между частотами линейное при логарифмическом масштабе частоты и спектральной плотности.

Таблица 2 – Эксплуатационные режимы низкочастотного вибрационного нагружения

	Поддиапазо	Продолжительность					
1-2	2-5	5-10	действия вибрации в				
Амі	плитуда виброу	каждом поддиапазоне					
AMI	плитуда виороу	ускорения, м/с	(g)	частот, с			
4,9 (0,5) 9,81 (1,0) 9,81 (1,0) 14,7 (1,5) 120							
Примечание - Изменение амплитуды виброускорения в поддиапазонах частот							
линейное при логарифмическом масштабе частоты.							

Таблица 3 – Эксплуатационные режимы линейных ускорений, действующих в обе стороны по каждой из трех взаимно-перпендикулярных осей

Ускорение, м/c ² (g)	Продолжительность действия линейного
Ускорение, м/с (g)	ускорения по каждому направлению, с
98,1 (10)	600

Таблица 4 — Эксплуатационные режимы ударных воздействий (в виде спектра удара при добротности Q=10)

Цомор		Частота, Гц							
Номер	50	100	200	500	1000	2000	5000	ударных	
режима		3	начения	спектра :	удара, м/	$c^{2}(g)$		воздействий	
1	245	736	1960	5890	17200	24500	24500	3	
1	(25)	(75)	(200)	(600)	(1750)	(2500)	(2500)	3	
2	98	294	885	3430	5900	5900	5900	8	
2	(10)	(30)	(90)	(350)	(600)	(600)	(600)	8	
3	687	1079	1766	3139	7848	19620	19620	1	
	(70)	(110)	(180)	(320)	(800)	(2000)	(2000)	1	

Примечания:

- 1) Изменение значений спектра удара между частотами линейное при логарифмическом масштабе частоты и спектра удара.
- 2) Режим 3 соответствует ударному воздействию от срабатывания механизмов ТПК и разработан на основании результатов замеров ударных ускорений при срабатывании механизмов ТПК с использованием войлока между пирочекой и корпусом ТПК.

- 2.8.2 Режимы механических воздействий на участке выведения МКА формата «CubeSat» с использованием универсального ТПК 235КС в случае установки ТПК на КА, или адаптере ПН разработки АО «РКЦ «Прогресс» приведены:
 - в таблицах 5, 6 по вибрации;
 - в таблице 7 по линейным ускорениям;
 - в таблице 8 по ударным воздействиям.

На участке выведения на МКА формата CubeSat действует акустическое давление с суммарным среднеквадратическим уровнем 144 дБ в течение 60 с (отсчет значений уровней акустического давления от $P=2\cdot10^{-5}$ Па).

Таблица 5 – Эксплуатационные режимы широкополосной случайной вибрации

Ма								
ежил	20	50	100	200	500	1000	2000	Продолжи-
Номер режима	Спектральная плотность виброускорения, м $^2 \cdot c^{-4} \cdot \Gamma \mu^{-1} (g^2/\Gamma \mu)$ действия, с							
1	1,92	3,85	5,77	7,69	7,69	2,4	0,962	120
1	(0,02)	(0,04)	(0,06)	(0,08)	(0,08)	(0,025)	(0,01)	120
2	0,48	0,48	0,77	0,96	0,96	0,77	0,48	480
2	(0,005)	(0,005)	(0,008)	(0,01)	(0,01)	(0,008)	(0,005)	700
3	0,385	0,385	0,385	0,385	0,385	0,385	0,192	2000
3	(0,004)	(0,004)	(0,004)	(0,004)	(0,004)	(0,004)	(0,002)	2000

Примечание - Изменение спектральной плотности виброускорения между частотами линейное при логарифмическом масштабе частоты и спектральной плотности.

Таблица 6 – Эксплуатационные режимы низкочастотного вибрационного нагружения

	Поддиапазо	Продолжительность		
2-5	5-10	10-20	20-40	действия вибрации в
Ang	плитуда виброу	vorcepound M/o	$^{2}\left(\mathbf{g}\right)$	каждом поддиапазоне
AMI	плитуда виороу	ускорения, м/с	(g)	частот, с
9,81-19,6	19,6 (2,0)	19,6-29,4	29,4 (3,0)	120
(1,0-2,0)	19,0 (2,0)	120		
-	-	4,9 (0,5)	4,9 (0,5)	240

Примечание - Изменение амплитуды виброускорения в поддиапазонах частот линейное при логарифмическом масштабе частоты.

Таблица 7 – Эксплуатационные режимы линейных ускорений, действующих в обе стороны по каждой из трех взаимно-перпендикулярных осей

Ускорение, M/c^2 (g)	Продолжительность действия линейного
э скорение, м/с (g)	ускорения по каждому направлению, с
98,1 (10)	600
4,9 (0,5)	1500
1,96 (0,2)	Не регламентируется

Таблица 8 – Эксплуатационные режимы ударных воздействий (в виде спектра удара при добротности Q= 10)

Цомор		Частота, Гц								
Номер	50	100	200	500	1000	2000	5000	ударных		
режима		3 _F	начения с	епектра у	дара, м/с	$e^{2}(g)$		воздействий		
1	98	294	981	3920	9810	9810	7850	4		
1	(10)	(30)	(100)	(400)	(1000)	(1000)	(800)	4		
2	98	294	785	2450	4900	4900	2940	7		
	(10)	(30)	(80)	(250)	(500)	(500)	(300)	/		
3	49	147	490	1670	3430	3430	1960	5		
3	(5)	(15)	(50)	(170)	(350)	(350)	(200)	3		
4	687	1079	1766	3139	7848	19620	19620	1		
4	(70)	(110)	(180)	(320)	(800)	(2000)	(2000)	1		

Примечания:

- 1 Изменение значений спектра удара между частотами линейное при логарифмическом масштабе частоты и спектра удара.
- 2 Режим 4 соответствует ударному воздействию от срабатывания механизмов ТПК и разработан на основании результатов замеров ударных ускорений при срабатывании механизмов ТПК с использованием войлока между пирочекой и корпусом ТПК.

2.8.3 Испытания МКА рекомендуется проводить с учетом коэффициентов «квалификации» - это объективно повышает надежность и полностью соответствует практике наземной отработки, принятой в настоящее время на предприятиях отрасли и за рубежом. При проведении квалификационных испытаний МКА на режимы механических воздействий эксплуатационные режимы, приведенные в разделах 2.8.1 и 2.8.2, должны быть увеличены (умножены) на коэффициенты квалификации. Рекомендуемые значения коэффициентов квалификации приведены в таблице 9.

Таблица 9 – Коэффициенты квалификации

Механические воздействия	Коэффициент квалификации
Линейное ускорение	1,3
Широкополосная случайная вибрация	2,25
Низкочастотная синусоидальная вибрация	1,3
Спектр удара	1,0
Акустическое давление	+3 дБ с продолжительностью
They will receive Australia	действия 120 с

- 3 Механический интерфейс
- 3.1 <u>Вариант 1</u> использование для размещения МКА пускового устройства ТПК разработки АО «РКЦ «Прогресс» (изделие 235КС)

МКА должен иметь габаритные размеры и массу в соответствии со спецификацией «Munakata, Riki «Cubesat design specification rev. 13» The cubesat program», California Polytechnic State University, 2009, при этом:

- габаритные размеры 1U, 1.5U, 2U, 3U, 3U+;
- масса от 0,8 до 6,0 кг:
 - 1U, 1.5U 0,8 ÷ 2,2
 - 2U 1,5 ÷ 3,0
 - 3U, 3U+ 1,0 ÷ 6,0.
- 3.2 <u>Вариант 2</u> использование для размещения МКА пусковых устройств зарубежного производства
- 3.2.1 Информация по механическому интерфейсу пускового устройства должна отражаться в габаритных чертежах.

Конструкция пусковых устройств и МКА должна быть работоспособна при воздействии и после воздействия на них внешних факторов, приведенных в разделе 2 настоящего документа с учетом следующего:

- требования п. 2.8 распространяются на пусковые устройства за исключением режима 3 таблицы 4 и режима 4 таблицы 8;
- требования по режимам механических воздействий на MKA определяются разработчиком пускового устройства.

После срабатывания пусковые устройства должны сохранять целостность до завершения орбитального полета БВ «Волга».

Пусковое устройство, его конструктивные элементы и узлы крепления, не должны иметь резонансов при частотах не более 25 Гц.

Конструкция пускового устройства должна быть удобна в эксплуатации, в том числе при монтаже (демонтаже) его на адаптер КА, а также обеспечивать

полную безопасность в обращении с ним при хранении, транспортировании, испытаниях, монтаже (демонтаже). Конструкция пускового устройства не должна препятствовать свободному доступу инструмента к элементам его крепления на адаптер КА.

Конструкция пускового устройства должна обеспечивать невозможность перепутывания электросоединителей при состыковке их с ответными частями.

На электросоединители, незадействованные во время полета, должны быть установлены крышки или заглушки, не допускающие самоотвинчивания.

Технологические элементы, снимаемые в процессе подготовки пускового устройства к эксплуатации, в том числе защитные крышки электросоединителей, должны быть красного цвета, иметь маркировку и невыпадающий крепеж. Применение красного цвета для других элементов пускового устройства недопустимо.

Для защиты от статического электричества пусковое устройство должно иметь узел металлизации с адаптером KA.

Переходное сопротивление «узел металлизации – корпус пускового устройства» должно быть не более 200 мкОм (не более 300 мкОм, если корпус выполнен из магниевого сплава).

Необходимо поставить в АО «РКЦ «Прогресс» штатное пусковое устройство или его ГМЦМ для проверки стыкуемости с адаптером КА и ЭВТИ.

Примечание - ГМЦМ должен соответствовать летной модели пускового устройства по внешним обводам, массе, координатам центра масс, конструкции узлов крепления, конструкции, изменяющей свои габариты после установки на адаптер КА, и электросоединителям и расположению их на пусковом устройстве.

Для изготовления конструкции пускового устройства должны применяться материалы, обеспечивающие допустимые контактные пары с элементами конструкции адаптера КА.

Должно допускаться крепление к корпусу пускового устройства экранновакуумной теплоизоляции адаптера КА (наклеивание застежек).

Для электрической стыковки пускового устройства с адаптером КА должны быть изготовлены разработчиком пускового устройства кабели, оканчивающиеся российскими соединителями со стороны, стыкуемой с адаптером КА.

3.2.2 Пусковое устройство с МКА в процессе наземной подготовки и в течение полета в составе КГЧ не должно требовать подачи электропитания со стороны БВ за исключением импульса напряжения, выдаваемого на пусковое устройство для активации механизма отделения МКА.

Пусковые устройства с МКА должны иметь гарантийные сроки и гарантийные наработки, обеспечивающие их эксплуатацию в составе КГЧ.

Для проведения расчета по безударности отделения МКА от адаптера должны быть представлены материалы, подробно описывающие процесс раскрытия солнечных батарей и других подвижных элементов конструкции МКА после выхода из пускового устройства.

Габаритный чертеж пускового устройства должен содержать:

- 1) Размеры, позволяющие определить конфигурацию пускового устройства.
- 2) МЦИХ (начальные и конечные значения, если они изменяются в процессе работы) с предельными отклонениями.
- 3) Расположение, координаты и типы электросоединителей, положение направляющих ключей для российских электросоединителей, обозначение электросоединителей согласно электрической схеме.
- 4) Координаты и размеры установочных мест (узлов крепления) с допусками, неплоскостность по установочным местам пускового устройства (должна быть не более 0,2 мм).
- 5) Требуемое положение осей пускового устройства относительно осей адаптера КА или примечание: «Положение пускового устройства относительно осей адаптера КА безразлично».

- 6) Положение центра масс пускового устройства относительно посадочных отверстий и посадочной поверхности с предельным отклонением; начальное и конечное положение, если оно изменяется в процессе работы.
- 7) Расположение и наименование элементов пускового устройства, требующих доступа в составе адаптера КА.
- 8) Крайние предельные положения движущихся частей, изменяющих габариты пускового устройства.
 - 9) Размеры зоны отделения МКА.
- 10) Расположение, координаты, материал и размеры узла металлизации, величину переходного сопротивления «узел металлизации корпус пускового устройства». Фразу: «Для измерения переходного сопротивления допускается местное снятие покрытия на корпусе с последующим его восстановлением» или указать место без покрытия для замера переходного сопротивления.
- 11) Расположение, наименования и номера технологических элементов, снимаемых в процессе подготовки к эксплуатации пускового устройства.
- 12) Фразу: «При работе с прибором пользоваться инструкцией по монтажу/демонтажу пускового устройства [наименование, номер]».
- 13) Наименования, размеры, массу и зону обслуживания частей пускового устройства, снимаемых и устанавливаемых на пусковое устройство после его установки на адаптер КА.
 - 14) Материал и покрытие корпуса и посадочных мест прибора.
- 15) Если требуется отвод тепла на конструкцию адаптера КА через поверхность пускового устройства необходимо указать эту поверхность, ее наименование, размеры, площадь теплосъема, тип теплопроводной пасты, плотность теплового потока (Вт/м2), максимальный тепловой поток через эту поверхность (Вт).

- 16) Указание о допустимом диапазоне температур посадочной поверхности на адаптере КА, коэффициенты A_S и ϵ внешних и внутренних открытых поверхностей пускового устройства, места размещения нанесенной на него теплоизоляции.
- 17) Указание о допустимости закрытия теплоизоляцией пускового устройства, места, не допускающие нанесения теплоизоляции, расположение и размеры мест крепления к пусковому устройству теплоизоляции адаптера КА (наклеивание застежек).
 - 3.2.3 Габаритные чертежи кабелей должны содержать:
 - Разводку кабелей с указанием длины.
 - Массу с предельным отклонением:
 - Тип и маркировку соединителей.
 - Размеры поперечного сечения.
- Требования по монтажу в составе адаптера КА (в т. ч. допустимый радиус изгиба, расстояние между крепежными точками).
- 3.2.4 В ИД на МКА должны приводиться объединенные МЦИХ пускового устройства и МКА с предельными отклонениями.

- 4 Электрические интерфейсы
- 4.1 <u>Вариант 1</u> (см. Введение) МКА не должен иметь электрических связей с ТПК, БВ, КПА.
- 4.2 <u>Вариант 2</u> (см. Введение) общие требования к электрическим интерфейсам.
- 4.2.1 Цепи команд управления и телеметрии пускового устройства должны быть гальванически развязаны от корпуса пускового устройства и между собой.
- 4.2.2 Величина электрического сопротивления изоляции электрических цепей связи пускового устройства с системами БВ относительно корпуса БВ (адаптера КА) и между любыми электрически разобщенными цепями должна быть не менее 20 МОм при нормальных климатических условиях.
- 4.2.3 Изоляция электрических цепей связи пусковых устройств с системами БВ на всех этапах эксплуатации должна обеспечивать электрическую прочность, достаточную для предотвращения пробоя.
- 4.2.4 В пусковом устройстве должен быть предусмотрен контроль факта приема команды управления от БВ с передачей на систему телеметрического контроля БВ.
 - 4.2.5 Электрические характеристики цепей управления пиросредствами:
 - Ток срабатывания в цепи пиропатронов (одной цепи) 2÷5 A;
 - Напряжение, подаваемое на пиропатроны 27 (+5/-1,5) В;
- Допустимое количество пиропатронов, срабатываемых одновременно (по одной команде) – не более 8 шт;
 - Длительность команды на пиропатрон 150±60 мс.

Максимальное количество команд на пиропатроны зависит от требований основного (целевого) ПГ и общего количества попутных КА.

4.2.6 Максимальное количество параметров с МКА, контроль которых возможен телеметрической системой, зависит от требований основного (целевого) ПГ. При этом суммарное количество параметров со всех КА не должно превышать 18 цифровых, 2 аналоговых и 4 температурных.

- 4.2.7 Датчики, подлежащие контролю телеметрической системой, должны быть следующих типов:
- а) аналоговые генераторные в виде схем с выходным напряжением от 0 до 6,3 В при токе опроса не более 20 мкА и выходным сопротивлением датчика не более 1 кОм. Допускается увеличение выходного сопротивления датчика до 10 кОм при увеличении погрешности измерения;
- б) аналоговые параметрические датчики отношений (потенциометры, делители напряжения) с выходным сопротивлением от 1 до 4 кОм и током опроса не более 20 мкА, запитываемые напряжением (6,3±0,15) В от системы;
- в) дискретные параметрические, выполненные в виде электронного ключа с открытым коллектором с выходным напряжением в замкнутом состоянии (логическая «1») от 0 до +1 B;
- г) дискретные параметрические в виде контакта реле или переключателя с выходным сопротивлением не более 100 Ом в состоянии логическая «1» и не менее 100 кОм в состоянии логический «0»;
- д) дискретные генераторные (выходы микросхем, схемы с выходным сопротивлением до 1 кОм и т.п.) с выходным напряжением от минус 1 до +0,7 В в состоянии «логическая 1» и от +2,2 до +10 В в состоянии «логический 0»;
- е) аналоговые параметрические датчики в виде терморезисторов с выходным сопротивлением от 0 до 200 Ом с током опроса не более 2,5 мА.
- 4.2.8 Конкретное количество параметров с МКА, контроль которых возможен телеметрической системой, а также команд управления, которые могут быть выделены для управления МКА и пусковыми устройствами определяется по результатам проработки АО «РКЦ «Прогресс» соответствующих предложений заказчика.

- 5 Требования к электромагнитной совместимости
- 5.1 Требования к ТПК
- 5.1.1 ТПК должен быть стойким к воздействию электромагнитных полей с уровнем 10 В/м в соответствии с ГОСТ Р 51317.4.3-2006 (ГОСТ 30804.4.3-2013). Подтверждение выполнения требования проводить по ГОСТ Р 51317.4.3-2006 (ГОСТ 30804.4.3-2013).
- 5.1.2 ТПК должен сохранять работоспособность при воздействии кондуктивных помех с уровнями:
 - U = 1 B, в полосе частот от 0,03 до 150 к Γ ц;
- $U = [1-0,49 \cdot \lg(f/0,15)]$ В, в полосе частот от 0,15 до 10 МГц, где f частота в МГц;
 - U = 0.1 B, в полосе частот от 10 до 300 МГц.

Подтверждение выполнения требования по помехам проводить по ОСТ 92-4802-83.

- 5.2 Требования к МКА
- 5.2.1 Для <u>Варианта 1</u> (см. Введение) МКА на этапе выведения должен находиться в выключенном состоянии. Включение МКА происходит по команде отделения.
- 5.2.2 При подготовке МКА на СК, в процессе выведения, до и после команды отделения (не менее 5 минут после команды отделения) уровни электромагнитных излучений МКА не должны превышать значения, приведенные в таблице 10.

Таблица 10 – Допустимые уровни электромагнитных излучений МКА на стыке МКА/адаптер

Диапазон частот, МГц	Напряженность поля, дБмкВ/м
0,01-1237	120
1237-1254	30
1254-1400	120
1400-1550	80
1550-1640	19
1640-1800	80
1800-18000	120

- 5.3 Разработчики РЭС должны предоставить в ЭО публикацию о частотном присвоении РЭС в Международном частотном циркуляре (IFIC).
- 5.4 Требования по ЭМС пусковых устройств и МКА должны быть подтверждены испытаниями на ЭМС, проводимыми предприятиями разработчиками пусковых устройств и МКА.

По результатам испытаний должен быть предоставлен отчет по результатам выполнения требований.

- 6 Требования к надежности
- 6.1 Отказ пусковых устройств МКА не должен приводить к нарушению работоспособности основной полезной нагрузки и БВ «Волга».
- 6.2 Должен быть проведен анализ видов, последствий и критичности отказов пусковых устройств (FMECA) (для европейских разработчиков по МЭК-812).

- 7 Требования к безопасности
- 7.1 Безопасность эксплуатации пусковых устройств и МКА должна обеспечиваться конструктивно-схемными решениями, технологией выполнения работ при наземной проверке, а также указаниями эксплуатационной документации в соответствии с ОТТ 11.1.4-88 часть 6.
- 7.2 Пусковые устройства MKA быть И должны пожаровзрывобезопасными, КА не должны представлять опасности ДЛЯ И обслуживающего персонала от собственных электромагнитных излучений.
- 7.3 Материалы, применяемые в пусковых устройствах и МКА не должны выделять токсичных веществ.
- 7.4 Экологическая безопасность пусковых устройств, МКА и КИА должна обеспечиваться в соответствии с ГОСТ Р 52985-2008, ГОСТ Р 52925-2008. Заключение о достаточности и обоснованности мер по выполнению данных требований должно быть приведено отдельным разделом в итоговом отчете о готовности МКА и пускового устройства к запуску (в ИОГ).
- 7.5 Пусковые устройства и МКА должны отвечать требованиям комитета ООН по космосу, изложенным в «Руководящих принципах работ по снижению засоренности околоземного космического пространства» (LADC-02-01, 12.04.2002).
- 7.6 В заключении о достаточности и обоснованности мер по экологической безопасности пусковых устройств, МКА и КИА должно указываться:
- перечень и количественные характеристики имеющихся в пусковых устройствах и КИА вредных и опасных для окружающей природной среды (ОПС) факторов;
- принятые в пусковых устройствах, МКА и КИА конструктивные,
 технологические и т.п. меры и решения по исключению (снижению уровня) их
 вредного воздействия на всех этапах эксплуатации пусковых устройств и МКА,
 включая аварийные ситуации с пусковыми устройствами и МКА, в том числе при аварийном исходе полета;

- вывод (заключение) о соответствии нормативно-технической документации и достаточности предусмотренных мер и решений для обеспечения экологической безопасности эксплуатации пусковых устройств, МКА и КИА.
- 7.7 МКА должен иметь металлизацию с пусковым устройством не менее чем в 2-х точках. Переходное сопротивление, измеренное в местах металлизации (щупы измерительного прибора располагать не далее 2,5 см от мест металлизации) должно быть не более $1,2\cdot10^{-3}$ Ом при металлизации непосредственным контактом.

- 8 Наземная подготовка пускового устройства и МКА в составе КГЧ
- 8.1 Установка ТПК с МКА в состав КГЧ должна производиться силами АО «РКЦ «Прогресс».

МКА и ТПК отечественного и иностранного производства должны соответствовать следующим требованиям:

- а) МКА формата «CubeSat» и ТПК должны поставляться предприятиемразработчиком МКА непосредственно в ЭО в собранном виде (в таре предприятия-разработчика МКА).
- б) В случае поставки в ЭО МКА формата «CubeSat» и ТПК по отдельности, работы по их сборке должны проводиться силами и средствами предприятия-разработчика МКА. При использовании ТПК разработки АО «РКЦ» Прогресс» установка МКА в ТПК должна производиться силами предприятия-разработчика МКА.
- в) Все необходимые проверки МКА перед установкой в состав КГЧ должны проводиться силами и средствами предприятия-разработчика МКА.
- 8.2 Конструкция и массово-центровочные характеристики ТПК с МКА должна обеспечивать установку их в состав КГЧ вручную.
- 8.3 После установки ТПК с МКА в состав КГЧ проводятся следующие проверки:
- а) проверка отсутствия напряжения в цепях управления пиропатронов и их штатная стыковка;
- б) проверка цепей управления пиропатронами с подключенными пиропатронами методом обтекания безопасным током;
- в) проверка исходного состояния БВ «Волга» с установленным «ТПК+МКА» по ТМ-информации.

- 9 Предоставляемые материалы
- 9.1 Разработчику МКА необходимо предоставить следующие документы:
- сертификат-разрешение на осуществление космической деятельности от зарубежного разработчика МКА;
- сертификат обязательства зарегистрировать МКА в Уполномоченной Национальной Организации;
 - сертификат (наличия) разрешения на запуск МКА;
- сертификат о регистрации частот МКА в Международном Союзе Электросвязи;
- сертификат о готовности МКА к наземным операциям по подготовке к пуску, запуску с помощью СВ (РКН) и полету;
- пакет данных о готовности МКА, подтверждающий вышеуказанный (предыдущий) сертификат о готовности МКА к наземным операциям;
 - сертификат общего вида и технических характеристик МКА;
 - сертификат назначения и полетного задания МКА;
 - сертификат на полетные электрические соединители МКА.
- сертификат о невоенном применении МКА (обычно это излагается в сертификате о регистрации частот МКА в МСЭ).
- сертификат по безопасности МКА (включая оценку рисков) на всех этапах: подготовки к пуску, запуску и полету в составе СВ (РКН) до момента отделения от СВ;
- пакет данных по безопасности МКА, подтверждающий вышеуказанный (предыдущий) сертификат по безопасности МКА;
 - сертификат по обеспечению безопасности окружающей среды.

Допускается объединение сертификатов близких по тематике.

Указанные документы должны быть предоставлены официально с сопроводительным письмом.

- 9.2 Порядок использования в составе МКА научной аппаратуры иностранного производства определен ГОСТ Р 51508-99, ГОСТ РО 1410-002-2010.
- 9.3 Разработчик МКА должен представить Заключение о готовности МКА к проведению запуска за 1,5 месяца до пуска.

Перечень принятых сокращений

БВ – блок выведения

ГБ – головной блок

ГЧ – габаритный чертеж

ГМЦМ – габаритный массовый центровочный макет

ЗИП – запасные части и принадлежности

ИД – исходные данные

ИОГ – итоговый отчет о готовности

КА – космический аппарат

КГЧ – космическая головная часть

КИА – контрольно-испытательная аппаратура

КПА – контрольно-проверочная аппаратура

КУ – команда управления

МКА – малый космический аппарат

МСЭ – международный союз электросвязи

МЦИХ – массо-центровочные и инерционные характеристики

ПГ – полезный груз

ПН – полезная нагрузка

ПхО – переходный отсек

ПЗ – полетное задание

РКН – ракета космического назначения

РН – ракета-носитель

РЭС – радиоэлектронные средства

СВ – средства выведения

СЗБ – сборочно-защитный блок

СК – стартовый комплекс

СС – стартовая система

ТК – технический комплекс

ТПК – транспортно-пусковой контейнер

УТК – универсальный технический комплекс

ЭВТИ – экранно-вакуумная теплоизоляция

ЭМС – электромагнитная совместимость

ЭО – эксплуатирующая организация